代写MATA31 - Proofs in Calculus代写留学生Matlab语言

- 首页 >> CS

MATA31 - Proofs in Calculus

MATA31 is a course that trains you to think logically via Calculus (a topic you learned in high school).

Our primary goal is to improve your skills in

 problem solving,

 logic,

•  deductive reasoning, and

• writing mathematics and proofs precisely.

This rigorous course will prepare you for our programs and advanced courses by emphasizing the precise writing of proofs.  Mastery of proof-writing is essential for all students in mathematics, statistics, and computer science, as it strengthens problem-solving skills and encourages a mindset of precision and clarity (i.e., soft skills highly valued in all of these fields).

Practice is key for learning to write precise proofs.  It is normal to feel frustrated and make mistakes as part of the learning process.  Your professor and TAs are here to help and support you.  We believe in your ability to meet high standards and will grade based on your demonstrated understanding of the material and correct use of notation. Poorly justified solutions will receive few points.

The purpose of this document is to highlight key concepts from logic needed for proof-writing in this course.  It covers only the most commonly used concepts required during the first few weeks of MATA31.  Other topics and proof techniques will be introduced as needed later in the course.  You will also explore mathematical proofs in greater depth in other courses (e.g., CSC/MATA67).

What is a mathematical statement?

A mathematical statement is a sentence that can be either true or false (but not both).

For example, the following are mathematical statements.

(Recall that ∈ means “is a member of” and ⊆ means “is a subset of” .)

  5 + 3 = 8.      This is a true statement.

•  5 + 3 = 9.      This is a false statement.

•  π  R.            This is a true statement since π is a member of the set of real numbers.

•  Q  Z.           This is a false statement as there are rational numbers that are not integers.

It is typical to use the letters P and Q to denote mathematical phrases (i.e., predicates) or statements.

Below are the important logic symbols needed for MATA31 (you will learn more symbols in CSC/MATA67).

Symbol

How to read it

Meaning

=

implies

“P  = Q” means If P is true, then Q is true .

⇐⇒

if and only if (equivalent)

“P  ⇐⇒ Q” means  both P  = Q and Q  = P must be true .

for all / for every

 x, P(x)” means For all x, P(x) is true .

there is / there exists

 x, P(x)” means There is at least one x such that P(x) is true .

In the implication P  =⇒ Q, we call P the hypothesis and Q the conclusion.


What is a proof?

A proof of a mathematical statement is an argument that begins with established facts and follows a logical sequence to demonstrate that the statement is true. Each step along the way must be justified.

Statement

How to prove it

P  = Q

First assume P is true, then show Q is also true.  (*Other methods exist.)

 x  D , P(x)

First let x be an arbitrary element of D, then prove P(x) is true.

 x  D such that P(x)

First choose x, then prove both x  D and P(x) are true.

The keywords highlighted in the table should be used in your proof.  For example, read through the following three proofs and pay attention to how the words assumelet and choose are used.

Example 1

Let f : R → R be a real-valued function defined by f(x) = x2  − 4x + 7.  Prove the following statements:

(i)  f(x) = 3  =⇒ x = 2.                     (ii)  ∀ x ∈ R, f(x) ≥ 3.                         (iii)  ∃ x ∈ R such that f(x) = 4.

Proof. (i) We want to prove: If f(x) = 3, then x = 2, where f(x) = x 2 − 4x + 7.

Assume f(x) = 3.

It follows that x 2 − 4x + 7 = 3, by definition of f.

Hence, (x − 2)2 = 0, by algebra.

By properties of R, this implies that x = 2, as required to show.

Proof. (ii) We want to prove: ∀ x ∈ R, f(x) ≥ 3, where f(x) = x 2 − 4x + 7.

Let x ∈ R be arbitrary.

Then   f(x) = x 2 − 4x + 7,   by definition of f,

= x2 − 4x + 4 − 4 + 7, by algebra,

= (x − 2)2 + 3,  by algebra (alternatively, complete the square),

≥ 0 + 3,  by properties of R since (x − 2)2 ≥ 0,

= 3,    by basic arithmetic.

Since x ∈ R was arbitrary, this proves the statement as required.

Proof. (iii) We want to prove: ∃ x ∈ R such that f(x) = 4, where f(x) = x 2 − 4x + 7.

Choose x = 1.

Then x ∈ R and

f(x) = f(1),       by our choice of x,

= (1)2 − 4(1) + 7, by definition of f,

= 4,      by basic arithmetic,

as required to show.


Your proofs should follow the same format. In particular:

  Begin your proof with the word Proof.”

•  Always write in complete, grammatically correct sentences. Start each sentence with a word (not a symbol or number) and end with punctuation, even if it includes mathematical notation.

•  Correctly use words and phrases such as  hence,  therefore,  thus,  then  and  it  follows  that.   They  should  be preceded by statements that logically lead to the conclusion. Words like since and by are used when justifying a statement or step in your proof.

• Your proof should be concise.  Includeonly the necessary statements and justifications that connect them.  In MATA31, justification may include algebra/arithmetic, applying a definition, applying a previously proven theorem, quoting properties of inequalities, logs, real numbers, etc.

• At the end of a proof, use the symbol □ or  “QED” to indicate that the proof is complete.

We now prove a statement that has all three symbols (, 3 , Y).  To prove such a mathematical statement, first read the statement from left to right, then structure the proof in the same order.

Example 2

Prove the following statement: Y x ∈ R, (x  1  = 3 y ∈ R such that y(2 — y) = x).

Commentary

The polished proof is at the end.  Before writing it out, we discuss some strategy and include our thoughts and rough work. For assignments, do not hand in your rough work, only submit your final (and polished) proof!

First, what is the meaning of the statement?  If we read the statement out loud from left to right, we would say the following:

“For every real number x, if x is less than or equal to 1,

then there exists at least one real number y such that y(2 — y) = x is true.”

To prove this, we need to find a y that works. Before doing that, we discuss the structure the proof will have.  It should follow the same structure of the statement and use the words “assume”, “let” and “choose” accordingly.

Since the statement we want to prove starts with “Y x ∈ R”, our proof will begin by letting x be an arbitrary real number (why? because if we can prove the statement for an arbitrary value of x, then it must hold for all x).  It is customary to use the word “Let” . Thus, the first sentence in our proof is:Let x  R be arbitrary.”        (or     Let x  R.”) This sentence fixes x to be some real number for the rest of the proof.

“x  1  = 3 y  R such that y(2  y) = x.”

To prove an implication

P  Q

, we assume P is true, then prove Q is also true.

Thus, the next sentence in our proof will assume that the hypothesis (x ≤ 1) of our implication is true: “Assume that x ≤ 1.”

 3 y  R such that y(2  y) = x.”

How do we do this?  Since the next part of the statement is  3y ∈ R”, we must first tell the reader how to choose

y so that the conditions are satisfied. Thus, the next sentence in our proof will be “Choose y =                             .”

Since we do not know what to choose for y yet, we need to do some rough work. We notice that y must solve the quadratic equation y(2 — y) = x and we remember encountering such equations before!  Recall that x here is a fixed real number (at the beginning of the proof we fixed x to be an arbitrary real number, then later assumed x ≤ 1). Applying the quadratic formula and solving for y gives

y(2 − y) = x      =⇒   2y − y2  =       =⇒   y2  − 2y + = 0,

thus, 

We found two solutions, but our proof only needs one of these.  It appears that both satisfy the conditions so let

us choose y = 1 + 1 − x since it looks nicer.  The two conditions y must satisfy are y ∈ R    and    y(2 − y) = 儿.

To see that y ∈ R (i.e., y is defined), we notice the inside of the square root is 1 − 儿.  Luckily we have the assumption 儿 ≤ 1, thus, we are taking the square root of a non-negative number.

The second condition y(2 − y) = x is satisfied since that is how we found y in the first place.

When we write out our formal proof, the equation y(2 − y) = x will be a conclusion that follows from previous statements. We do not assume it to be true and solve for y as we did in our rough work, but rather, we prove it is true for our choice of y (never assume what you are trying to prove!).

At the end of the proof (after verifying the chosen y works) we could write a concluding statement, but in this case we will be brief and simply write “as required” followed by the symbol “□” .

Our final proof with justification added is shown below.  Notice how neat and orderly it appears and how each step follows from previous steps. We expect all of your proofs to also be neat and orderly!

We now present our proof for the statement:   x  R,  (  1  =  y  R such that y(2  y) = x).



 


站长地图