代写Spring 2023 CS 1332 StudyPalooza Worksheet代写留学生Matlab语言

- 首页 >> CS

Spring 2023 CS 1332 StudyPalooza Worksheet

Link To Doc: https://bit.ly/3At3vXg

CS 1332 FINAL EXAM TOPIC LIST

   Arrays

   Lists

   ArrayLists

   LinkedLists

■   Singly

■   Doubly

■   Circular Singly

■   Circular Doubly

   Linear Data Structures

○   Stacks, both linked and array-backed

○   Queues, both linked and circular array-backed

○   Deques, both linked and circular array-backed

   Binary Trees

○   Shape Properties (balanced, full, complete, degenerate)

○   Traversals (preorder, inorder, postorder, levelorder)

   Binary Search Trees

○   Operations: search, add, remove

   Binary Heaps

○   Operations: add, remove, upheap, downheap

   BuildHeap

   HashMaps

○   Closed Addressing: External Chaining (With coding)

○   Open Addressing: Linear Probing & Quadratic Probing

○   Operations: search, add, remove, resize

   SkipLists

○   Operations: search, add, remove

   AVLs

○   Balance information (heights & balance factors)

   Rotations (single & double)

○   Operations: search, add, remove

   2-4 Trees

○   Operations: search, add, remove

   Overflow Handling: promotion

   Underflow Handling: transfer & fusion

   Sorting

   Bubble

   Selection (With coding)

   Insertion

   Cocktail Shaker (With coding)

   Merge (With coding)

   Quick

   QuickSelect (With coding)

   LSD Radix (With coding)

   Heap (With coding)

○   Properties of all sorting algorithms above

■   Stability

■   Adaptivity

   In-Place vs Out-of-Place

   Pattern Matching

   Brute Force

   Boyer-Moore

■   without Galil rule (With coding)

   with Galil rule

   KMP (With coding)

   Rabin-Karp (With coding)

   Graphs

○   All graph terminology

   Breadth-First Search (With coding)

   Depth-First Search

   Recursive version (With coding)

   Dijkstra's Shortest Path (With coding)

   Prim's MST (With coding)

   Kruskal's MST

   Dynamic Programming

   Longest Common Subsequence

   Big O for all of the topics above

This doc samples questions from various topics and is not cumulative. For practice over specific topics, go to Canvas > Files > Resources > Additional Resources > PLUS Session Worksheets

Big O

Data Structures Table

Since these data structures all do different things, some of the categories may not apply (i.e. search for Stack) - write "N/A" if it does not apply. Some of the table is already filled  out. We are assuming worst-case time complexity with amortized analysis (denoted with an asterisk). Feel free to copy this table and fill it out for average-case analysis.


Data Structures Table (continued) - Assume Worst Case but feel free to make a table for average case


Sorting Algorithms Table


Pattern Matching Table


Graphs Table


Big O Practice:

Refer to Socrat ive Polls, previous exams, Kahoots, 30+ questions from Exam 1 worksheet, Exam 2 worksheet, and Exam 3 worksheet.

One question which you should know: What is the runtime of running the LCS algorithm on any arbitrary text or pattern.

T/F:

1.  The data in an ArrayList must be contiguous but the data in an array does not.

2.  In a SLL-backed Queue, elements are added to the back and removed from the front

3.  The location of adding to the front of an array-backed deque is (Front - 1) % array.length

4.  The average space complexity of a SkipList assuming it was constructed using a fair coin and the number of levels is capped at log(n) is O(n log(n))

5.  Heaps are always full, complete, and balanced

6.  KMP performs better for large alphabets with repeating characters in the text while Boyer Moore performs better for small alphabets.

7.  Running Dijkstra’s on the MST produced by either Prim’s or Kruskal’s will return the same result as running Dijkstra’s on the original graph.

Multiple Choice Questions

1.  Given the following tree, select all options the tree could be. You may need to select more than one answer.

 

a.  Binary Tree

b.  Binary Search Tree

c.  Heap

d.  AVL

2.  Assume you have an empty deque backed by an array with initial capacity 7. What is the resulting array after the following operations:

addFirst(5)

addLast(7)

addFirst(8)

addLast(1)

a.

7

1

 

 

 

8

5

b.

8

5

 

 

 

1

7

c.

5

8

 

 

 

7

1

d.

8

5

7

1

 

 

 

3. Given the MinHeap below, what is the resulting array after removing 6 from the heap?

null

6

10

44

23

15

60

a.

null

10

15

23

44

60

 

b.

null

 

10

44

23

15

60

c.

null

10

15

44

23

60

 

d

null

10

44

23

15

60

 

4. Suppose you have the HashMap below with the collision strategy of quadratic probing. Each <key, value> pair is <data, data>. Assume the hashcode is the same as the key (e.g. hash(10) = 10). The hashcode is then compressed to fit within the bounds of the HashMap. Suppose you add the <14, 14>. Which index should the data be added to?

Index

0

1

2

3

4

5

6

7

8

9

10

Entry

 

12

 

25

4

 

 

18

 

20

10

a.  0

b.  2

c.  5

d.  6

e.  8

5. You are given the starting array [3, 14, 25, 26, 37, 19] and perform an unknown sorting algorithm. After 1 iteration, the array becomes [3, 14, 25, 26, 37, 19]. Which sorting algorithm could have produced the array after 1 iteration? Select all that apply.

a.  Bubble Sort

b.  Selection Sort (selecting for minimum element)

c.  Cocktail Shaker Sort

d.  QuickSort (1 iteration is putting pivot in the right place)

e.   LSD Radix Sort

6. Perform. 2 iterations of LSD Radix Sort on the initial array below. What is the resulting array?

160

35

49

9

222

85

100

a.

160

100

222

35

85

49

9

b.

9

35

49

85

100

160

222

c.

35

85

49

9

100

222

160

d

100

9

222

35

49

160

85

7. Given the following SkipList, select the path taken to determine whether 46 exists.

Only nodes that are traversed over should be included in the path. The nodes in the path are written as (level number, data).

 

a.  (4, -∞), (4, 5), (4, 47), (3, 47), (2, 47), (1, 47), (0, 47)

b.  (4, -∞), (4, 5), (3, 5), (3, 33)

c.   (4, -∞), (4, 5), (3, 5), (3, 33), (2, 33), (2, 44), (1, 44), (0, 44)

d.  (4, -∞), (3, -∞), (2, -∞), (1, -∞), (0, -∞), (0, 5), (0, 15), (0, 33), (0, 44)

8. Give the following scenario, select the sorting algorithm that would perform best. Assume that the integers are being sorted in ascending order:

Efficiency is prioritized and no memory constraints exist. The relative order of duplicates must be maintained. The input data has 20 elements, with the largest element being 1234567890 and the smallest element being 0.

a.  QuickSort

b.  MergeSort

c.   LSD Radix Sort

d.  Bubble Sort


9. Given the following AVL and the add operation, describe the sequence of rotation operations that are performed after the add operation.

Add(24)

 

a.  Right-Left rotation

b.  Left-Right rotation

c.  Right rotation

d.  Left rotation

e.  No rotations needed

Diagramming Questions

1. Create a MaxHeap from the following list of data: [25, 11, 84, 33, 46, 50, 77, 100]

Tree Diagramming:

2. BST traversals (Challenge!)

a.  Construct a BST so that the Pre-Order traversal is [20, 16, 33, 45, 40]

b.  Construct a BST so that the In-Order traversal is [13, 21, 27, 31, 49]

c.  Construct a BST so that the Level-Order traversal is [6, 3, 10, 1, 5, 13]

d.  Construct a BST so that the Post-Order traversal is [20, 18, 27, 31, 39, 22]




3. Questions a-c apply to the 2-4 tree above. If needed for any operations, use the predecessor node. You should perform. the operation based on the result of the previous part (for example, in b, you should remove 5 from the result in a)

a. Remove 11 from the following 2-4 tree

b. Now, remove 5 and determine the resulting 2-4 tree.

c. Now, remove 20 and determine the resulting 2-4 tree.

 

Questions 4-7 apply to the tree above. If necessary for any operations, use the successor node.

4. Remove 100 treating the tree as an AVL.

5. (Hard) Using the same tree in the image above and treating it as an AVL (without removing 100), remove 60 instead.

6. Using the same tree in the image above, remove 60 treating it as a BST instead.

7. Using the same tree in the image above, remove 29 treating it as a BST.


For the DFS, BFS, and Dijkstra’s problems below, if there exists a tie on the next vertex to traverse, always choose the vertex that comes first alphabetically.

8. Run DFS and BFS on the graph below beginning at vertex B and determine the order in which the vertices are visited.

 

9. Run Dijkstra’s on the graph below beginning at vertex G and determine

a. The order in which the vertices are visited.

b.  The distance map to all other vertices

 


10. Kruskal’s Algorithm

If you need to break ties, compare edges alphabetically after sorting the edges alphabetically. For example, if you need to break a tie between edges YA and GB, first sort the edges alphabetically to AY and BG. Note that AY comes before BG, so AY should be selected.

Run Kruskal’s Algorithm on the following graph and determine

a.  The order in which the edges are visited

b.   The fi nal MST produced

Do NOT continue adding edges once an MST has been formed. If you need a start vertex, use vertex A.

 


站长地图