代写Economics UN3412 Department of Economics Spring 2024 Midterm Mock Exam 2调试Haskell程序

- 首页 >> CS

Department of Economics

Economics UN3412

Spring 2024

Midterm Mock Exam 2

Question 1 (30 points)

We are interested in the causal effect of the amount of time students spend studying, hoursi, on their  score on their midterm exam,  scorei . We run a survey to obtain a representative sample of students, and in the survey we gather data on how many hours each student spent studying for the exam, which we then match to their score in the exam. We then run the regression

scorei = α0 + α1 hoursi + ui

by OLS.

(a)  (6p) Under which conditions will the  OLS estimates recover the causal effect of studying on exam scores in large samples?

(b)  (6p) Name an omitted variable that could cause omitted variable bias. Explain why it causes the bias. Do you think the bias is likely to be positive or negative? Why?

(c)  (6p) We ran a survey to gather data on how long each student spent studying. Do you think the data on hours spent studying is measured with error? If we are willing to assume that there is  “classical” measurement error, how does that bias the estimated coefficient βˆ1 .

(d)  (12p) Now that we are aware that there might be measurement error, we try to design a better way to gather our data. We purchase devices that track the time use of students. Assume that the device perfectly tracks how much time students spend studying. Unfortunately, the devices are defective. Whenever a  student spends more than 7 hours studying, all of their data is automatically deleted! As such, the sample only contains data on students who studied for 7 or fewer hours.

Below, you can see the results of the regression using the survey data (figure 1 shows the stata output, figure 2 shows the analogous R output), and the results of the regression using the data from the time-use tracking devices.  Which one gives you a better estimate of the effect of studying on exam performance?  Justify your answer.

Question 2 (30 points)

Based on US data, James Doti and Esmael Adibi obtained the following regression to explain personal consumption expenditure (PCE) in the United States.  PCE is measured in billion $.


with R2  = 0.98 and overall F-statistic of F=83,753.7.  Here, Income is the disposable income (billion $) and Rate is the prime rate (%) charged by banks.

(a)  (6p) What is the marginal propensity to consume (MPC) – the amount of additional consumption from an additional dollar’s income?

(b)  (6p) Is the MPC statistically different from 1 at a 5% level?  1% level? Explain.

(c)  (6p) What is the rationale for the inclusion of the prime rate variable in the model? A priori, would you expect a negative sign for this variable? Explain.

(d)  (6p) Is the slope coefficient for Rate statistically different from zero at a 5% level? Explain.

(e)  (6p) Interpret and test the hypothesis that R2=0 at a 5% level.

Short Questions (40 points total)

Answer the following short questions. Justify your answers briefly (10 points for each question).

(3) Let X and Y denote two random variables. If Cov(X, Y)  =  7,  E[X]  =  1, and E[Y] = 2, what is E[XY]?

(4) What are the two conditions under which the coefficient of interest in a multiple regression suffers from omitted variable bias?

(5) What is the external validity of a regression study?  Give an example that illustrates the concept.

(6) True or false? The coefficient on a particular regressor can have a causal interpre- tation even if none of the coefficients on the other regressors have a causal interpre- tation.






站长地图