代写CHC6186 Advanced Object-Oriented

- 首页 >> Algorithm 算法

CHC6186 Advanced Object-Oriented Programming
Coursework
For this coursework, you will produce in Java two versions of the game Wordle. One version will
have a Graphical User Interface (GUI) and the other version will have a command-line interface (CLI).
The GUI version will be constructed according to the principles of Model View Controller, and the CLI
version will use the same model. The two versions will from now on be called the GUI version and
the CLI version.
Learning Outcomes
This coursework will assess the following learning outcomes.
● Create a software artefact by applying the methodologies of advanced object-oriented
programming to a requirements specification
● Consult on-line code libraries to find the classes and methods most appropriate for solving a
problem
● Create appropriate documentation that clearly communicates the intended behaviour of a
program
This coursework is worth 50% of your module mark; the remaining 50% comes from your exam.
How to Play Wordle
Wordle is a recently popular word guessing game available online. 1
The player must guess a five-letter word in six tries
or less. Once the word is typed in (and enter
pressed), the background colour of each letter tile
is changed to either dark grey indicating that the
letter is not found in the desired word, gold
indicating the letter is found in the word but not in
the position indicated and green indicating that
the letter is found at that position; a letter can
occur more than once in a word. The word
entered must be a valid English word. Once the
word has been guessed the game will stop. The
game will also stop once the player has made six
tries.
The website is implemented in Javascript. Any
attempt to submit Javascript will receive a mark of
zero and any Java based on the website’s
Javascript will be treated as plagiarism in the
normal way. The website colours may be used.
1 https://wordlegame.org/
Functional Requirements
For greater clarity, the description of the GUI and the CLI versions of the game can be summarised in
the following list of functional requirements.
FR1 For the GUI version, there is no need to display a confirmatory message explaining that
the player has won (guessed the word) or lost (run out of guesses) since the game status is
clear from the tile colouring on the last filled row.
FR2 For the CLI version, a confirmatory message indicating the player has won or lost is
required.
FR3 The behaviour of the program shall be controlled by three flags. One flag should, if set,
cause an error message to be displayed if the word is not in the list of known words; this
will not then count as one of the tries. Another flag should, if set, display the word to be
guessed for testing purposes. Another flag, should, if set, cause the word to be randomly
selected. If unset, the word will be fixed.
FR4 The GUI version of the program should respond to key presses for each letter of the
alphabet, backspace (to remove the last typed letter on a non-empty line) and enter (to
indicate that the word on the current line is the user's guess). This can be done with a text
field or otherwise.
FR5 The Model should load in a list of five-letter words from which the target word can be
selected and a larger list of five-letter words that are not target words but are valid
guesses. The lists should be two separate files loaded from a fixed location and are given
to you; in other words, it is not necessary to ask the user where the files are stored.
FR6 The GUI should display a keyboard in which letters are displayed in dark grey if it has been
revealed that they do not occur in the word, green if a correct location of a letter has been
found and gold if the letter has been guessed but never at the correct location. See below
for an example; this functionality is like the GUI shown on the website. The CLI should
indicate available letters by listing the letters in the four separate categories
alphabetically.
FR7 The GUI version should have a button to ask for a new game which will be enabled only
after the first valid guess has been made. This is not required for the CLI version.
Non-functional Requirements
The following non-functional requirements also apply
NFR1 The GUI version and CLI version should be two separate programs ie there should be two
files each with a main method in them and which file is run determines which version
activated.
NFR2 The GUI version must be constructed according to the principles of MVC, as restated
below. Because of this requirement, code that belongs in the View but is placed in the
Model will usually not be counted towards the marks for the View. Similar rules will apply
for other misplaced code.
NFR3 The CLI version will use the Model part of the GUI version directly without using the View
or Controller; nor should it define a new view or controller.
NFR4 The code must be documented with asserts, unit testing, class diagram, comments as
described below.
NFR5 The code must be of good quality as described in the marking scheme below.
NFR6 The flags mentioned in FR3 should be in the Model. It is not necessary for them to be
changeable at run time.
NFR7 The model should also have a constant indicating the number of allowable guesses.
Marking Scheme (See rubric as well).
Model. This should have an interface designed to be convenient for the Controller, View
and JUnit class to use with no superfluous public methods, no references to two classes
and contain no GUI code. It may consist of several classes but there must be a class called
Model or similar that provides the interface and this class should extend Observable. File
reading should also be done in the Model. A high mark will be earned for a Model that
implements all the required functionality and respects all these constraints. A pass mark
will be earned for a Model that implements only some of the required functionality or fails
to respect these constraints.
20%
Controller. This should forward only valid requests to the Model, querying the Model if
necessary to find out if the request is valid, and must also enable / disable buttons as
described above in the functional requirements. It must have no GUI code, though it may
send messages to the View. A high mark will be given to a controller that respects all these
constraints and a pass mark will be given to a controller that respects only some of them
10%
View of GUI version using the Swing framework. It should implement Observer and
therefore have an update method that is called when the Model changes. This will be
marked according to how many of the functional requirements have been met. A high
mark will be given to a view that implements all the requirements and a pass mark will be
given to a view that implements only some of them.
10%
CLI version of the program, using the Model. 10%
Specification of Model with asserts. This should include invariants for the class as well as
pre and post conditions for each public method in the model. This will be marked
according to how many of the relevant conditions are included and whether the ones that
are included are correct. Partial credit will be available for describing them in English. A
high mark will be given to a specification that includes all the relevant constraints. A pass
mark will be given to a specification that includes only a few of them.
10%
Unit testing of the Model in JUnit. There should be three tests, significantly different from
each other. You should explain in comments the scenario ie the situation you are testing
for. You should use write (and then call) methods for the Model that set it into the state
desired for the test. It should be easy to see what state the Model is being set to by
reading the code for the unit tests. A high mark will be given to significantly different tests
10%
that are easy for the marker to interpret. A pass mark will be given to unoriginal second or
third tests or to three tests that are difficult to understand. Your Model may use a
separate Board class but the testing should be of the Model class and the specification
should be applied to that class also.
Use of the code quality practices described in Lecture 1, plus the additional practices of
light relevant commenting and correct formatting. Short elegant programs are preferred,
and code smells are to be avoided. Note that high marks for this category will only be
possible if the GUI fulfils most of the requirements. A high mark will be awarded if all the
practices are observed and a pass mark will be awarded if only some of them are.
10%
Class diagram. This should show how the Model, View and Controller are related to each
other, as well as how they interact with library classes such as Observable. Simplicity and
clarity will be reward. It will be marked according to its accuracy as a representation of the
program. A high mark will be awarded for an accurate diagram and a pass mark will be
awarded for a less accurate diagram.
10%
Video presentation that shows you displaying the code and using the program. It will be
marked according to timing, presentation and how well you show that you have met the
FRs and NFRs in both versions.
10%
Submission
● Your submission should contain three files (.pdf, .zip and .mp4). The first file is a .pdf document
with screenshots of the implementation (Java code), testing and design with a class diagram. The
second file is a .zip file with the Java project. The third file is a .mp4 video that less than 1 GB. If
the video is not viewable it will not receive marks. The video must be a maximum of three
minutes long during which you must display most of the relevant functionality and refer to your
code. Any recording software can be used so long as it captures your screen and your voice. The
pdf document is the version that will be marked but the .zip and .mp4 is requested so that we
may run the code.
● You must save the files with the following names:
{YourStudentNumber}-coursework.pdf
{YourStudentNumber}-coursework.zip
{YourStudentNumber}-coursework.mp4
For example: 202107081314-coursework.pdf, 202107081314-coursework.zip, 202107081314-
coursework.mp4
● You must upload from the student website (student.zy.cdut.edu.cn) before 17:00, May 22th
(Monday).
Some students will be selected to give a Zoom presentation, after the exam period. If you are asked
to give a Zoom presentation then you must do so.
Formative Feedback
We are giving you the opportunity to receive feedback on the design of your program. To receive
this feedback, you need to upload a detailed UML class diagram of your code to student website
before 17:00 on Friday March 31. As this is a formative feedback deadline, it will not be possible for
you to seek deadline extensions. You will be given a short amount of written feedback on your
design within a week. The Week 5 teaching session will go through a worked example in order to
help you produce the class diagram.
The class diagram should have all methods and attributes showing. In addition, you should indicate
which methods call which other methods. A class diagram with insufficient detail or syntactically
nonsensical or not realisable as an actual Java program will make it more difficult for us to give you
feedback and will receive a low mark if submitted with the final report.
Academic Conduct
This is an individual piece of work and you will have to work on your own and submit your own
original attempt at the assignment. Any code that has been copied from any source (e.g. Stack
Overflow, online tutorial, textbooks, other students etc.) must be properly referenced to avoid any
suspicion of plagiarism. Refer to the Module Handbook for further information on this. If you need
help you can always ask for advice and guidance from the module leader by email; online sessions
can be arranged for further clarification.
Rubric The work shall be marked according to the following rubric.
D C B A
Model only basic functionality
implemented or slightly more
than basic but references to View
or Controller or superfluous
methods
no superfluous methods and no
references to View or Controller
but only the basics of
functionality implemented
no superfluous methods and
no references to View or
Controller but only the basics
of functionality implemented
convenient to use with no superfluous methods, all required
functionality and no references to View or Controller, extends
Observable, calls setChanged and notifyObservers
Controller zero of the requirements: only
valid requests, querying Model
first, enables/disables buttons
without GUI code
one out of only valid requests,
querying Model first,
enables/disables buttons without
GUI code
two out of only valid requests,
querying Model first,
enables/disables buttons
without GUI code
only valid requests, has references to both Model and View,
converting UI interactions into methods to change the Model,
querying Model first, enables/disables buttons without GUI code
GUI View no view update method or
update method implementing
very few of the FRs
update method in view
implementing some of the FRs
update method in view
implementing most of the FRs
update method in view implementing all the FRs, uses Swing, has
Model and Controller as attributes, displays board and allows
Controller to change the view e.g. enable/disable options,
implements Observer and calls addObserver
CLI class CLI version implementing very
few of the FRs
CLI version implementing some of
the FRs
CLI version implementing
most of the FRs
CLI version implementing all the FRs, using same Model as the
GUI version, but no Controller and is demonstrated on the video
Specification
of
Model with
asserts
a few pre/postconditions
described in English
suitable pre/post conditions for
most public methods but in
English
suitable pre/post conditions
for most public
methods expressed in some
logic
suitable pre/post conditions for all public methods and class
invariants all expressed as statements of formal logic
Unit testing
of
Model with
JUnit
one test with the scenario poorly
described or not at all
tests all essentially similar or only
one or two or scenario being
tested poorly described
third test not significantly
different or scenario being
tested not described with
sufficient care
three significantly different tests of the model with all scenarios
exactly described and with all inputs satisfying the preconditions
Code quality
practices
most code quality practices not
observed
some code quality practices
observed but many not
most code quality practices
observed but some clearly not
all code quality practices observed including light correct
commenting, suitable identifier names (constants, methods,
classes etc) in appropriate cases, indentation, lack of code
smells (long methods, repeated code, lack of modularity)
Class
diagram
Inadequate class diagram with
serious mistakes in attributes and
relationships between classes
Adequate class diagram with
mistakes in both attributes and
relationships between classes
Good class diagram with only
a few mistakes in attributes,
visibility or relationships
between classes
Excellent class diagram with all attributes indicated with correct
visibilities and correct relationships between classes all shown
Video
Presentation
Very poor presentation with
insufficient coverage of FRs and
NFRs, poorly presented and
overly long
Passable presentation covering
FRs or NFRs or well-presented or
at least appropriate length
Quite good presentation but
missing some details of FRs
and NFRs or poorly presented
or overly long
Excellent presentation with full explanation of most FRs and
NFRs, referencing the code, well presented and within time limit

站长地图