代写ELEC6220 Power Systems Operations & Economics – Coursework 2024/2025代写留学生Matlab语言

- 首页 >> Web

ELEC6220 Power Systems Operations & Economics – Coursework 2024/2025

Utility Scale Solar Farm Feasibility in the UK

Set on: 08/10/2024

Hand in by: 09/12/2024 – 16:00

Feedback lecture: 09/01/2025

Introduction:

This coursework comprises 50% of the total assessment for the module ELEC6260.

The aim of this coursework is to undertake a feasibility study on a new utility-scale PV project. The first stage of a solar farm project is to develop a business case for the sales team to apply for funding and potential clients. For a new 5 MW project in the UK, you are to scout land within 34 KM of the weather station (latitude and longitude) provided to you. You will have to carry out a desktop feasibility study, followed by a business case for the project, and prepare a technical  report.  Throughout  the  coursework  assignment,  you  will  be  expected  to  apply knowledge gained from the lectured part of the course, but also to conduct significant research and independent study to help you to justify any assumptions.

Objectives:

- To identify suitable land of the assigned location in the UK for the development of a new 5MW PV project

- Use the NREL System Advisor Model to optimise the performance of the farm over its lifetime.

- Maximise the energy yield, net present value (NPV) and the internal rate of return (IRR), minimize the levelized cost of energy (LCoE) of the project, and explore financial incentives

- Identify risk and mitigation strategies for your project

Coursework Description:

The project is a utility scale solar farm at least 5 MW, i.e., the system must be connected to the transmission/distribution networks using a high voltage connection. All the other aspects of the project such as the location, technology used, revenue strategy etc. are completely open and to be determined by yourself.

You are fully responsible for all design matters of the system and selection of components, including the PV modules, support and mounting structures, inverters, substation, and grid connection point.

Note:  In the case of a real design, the farm will include several other components, namely, cabling, earthing, protection, combiner box. However, you are expected to only deal with the critical components mentioned above.

The design must be technically sound at the least, but the primary objective is to achieve a good economic return using reasonable assumptions.

Part 1. Grid Connection

You must select a high voltage (HV) grid connection point for your project. The selected connection point must have the capacity to accept all the power from your project plus an additional 20% free as a minimum. You also need to know the voltage of the connection point.

Calculations could include cost of cable, distance, degradation, losses etc. Output 1:

A clear description of the grid connection configuration, you need to consider voltages and capacity of the local transmission line and substation. Estimate the cable route and distance from  Point  of  Supply  (PoS)  to  Point  of  Connection  (PoC).  Discuss  connection  options, transmission infrastructure (overhead or underground), etc. PoC, PoS, and cable route needs to be clearly presented in a figure with coordinate information.

Part 2. System Design & Optimization

Your solar farm must be designed to maximise its performance and minimise losses and costs. You should explore the following:

•   Solar modules type (monofacial or bifacial)

•   Inverters (optimise to minimise clipping losses)

•   Mounting system (fixed, Single Axis Tracking, Dual Axis Tracking) Output 2:

A clear description of the design and optimization, including the selection of all the components. How was SAM used and the methods implemented for designing and optimizing? All the  assumption should be reasonable and clearly explained with industrial standards or regulations  as appropriate.

Part 3. Economic Revenue Assessment

To carry out the economic assessment you must first estimate the cost of the project to the best of your capabilities and the information that you can find. Use literature to find current capital costs for your project, as well as referenced inflation rate and discount rate. Given these values, and optimised energy yield for your solar farm, you should discuss the appropriate revenue stream, and financial incentives for your project. This can include: Power Purchase Agreements (PPAs);  Smart Export Guarantee  (SEG); Contracts for Difference (CfD) and Renewables Obligation Certificates (ROC)

Output 3:

Full economic assessment of the project as presented. It must be consistent with design. All economic assumptions should be shown. The value of NPV and IRR should include to do the comparison with the current market trend and values. Are the results competitive with market values? Is the business feasible? Financial incentives must be explained and supported.

Part 4. Risk assessment

The project risks need to be justified and the mitigation measures need to be presented with reference. This should cover risks associated with location site, choice of solar technologies, competing energy resources, grid connection, government policies, and market trends.

Output 4: A variety of risks and mitigation method need to be presented and explained well.

Requirements for report

You should write up your results in an individual technical report, which should not be longer (make it concise) than 6 pages in total. When producing your work, you should be aware of the academic integrity requirements; discussion with your peer group is encouraged, but the work you submit must be your own. A Plagiarism check will be conducted on all submitted work. Please take care that the limitation of the technical report is 6 pages (including references), a recommendation is given below which broadly conforms to the weighting of the assessment. Work should be submitted on A4 with standard margins (25.4 mm), single line spacing, and a font size no smaller than 10 points.

You must also upload your SAM simulation file ([filename].sam) alongside your report to showcase your design and economic outputs.

Guidance Notes/Marks Distribution: (Total 50)

Part 1: Grid connection (5)

a) Location and proximity to the Grid

Justification for the location's proximity to the nearest grid connection

Relevant maps/illustrations depicting the site and its connection to the grid

Analysis of available grid options and justifying for the chosen grid based on capacity

b) Methodology and justify for the chosen cable route

Strategy and reasoning behind the choice of cable, cost etc.

Detailed layout and/or diagram of the cable route

Part 2: Design and Optimization of PV system (20)

a) PV System and configurations

Comparison between monofacial and bifacial PV types

Rationale for the chosen type based on project goals

b) Tracking Solutions

Comparative study of fixed-tilt (and its most ideal angle), single-axis tracking, and dual-axis tracking

Optimal technology system type is chosen with justification in regards with energy yield/LCOE/NPV/IRR

c) Inverter Clipping

Analysis of clipping based on the PV system configuration chosen

Recommendations/proposals to minimize clipping losses

d) Shading Analysis

Analysing fixed/one axis shading using SAM and comparing it to relevant literature

Assess  the  trade-offs  between  different  algorithms,  such  as  backtracking,  and comprehend the effects of shading on aspects like hotspot generation

Part 3: Economic assessment and financial structure (15)

a) Financial Calculations

Summary of the correct calculation of IRR, LCOE and NPV with clear and supported assumptions

b) Comparison to Literature

Identification of similar projects in comparable climates to the location

Comparative analysis of the project financial metric with literature, with insights drawn from such comparison

c) Financial Incentives

Identification of potential financial incentives available for the project

Analysis of the impact of incentives on the financial metrics of the project

Recommendations on which incentives to go forward with based on analysis

Part 4: Risk assessment of the project (5 marks)

a) Risks associated with PV Project

a.    Recognizing the risks tied to the selected solar solution

b.    Highlighting concerns like market-centric challenges b) Mitigation strategy

Proposed mitigation strategies for each risk identified

Suggested countermeasures for each challenge identified

Quality of Report Writing (5 Marks)

-    Structure, formatting, grammar, spelling, references


站长地图