代写FEEG6008 Advanced Photovoltaic Fuel Cells & Batteries SEMESTER 2 EXAMINATION 2022/2023调试Haskel

- 首页 >> Database作业

SEMESTER 2 EXAMINATION 2022/2023

Title: Advanced Photovoltaic Fuel Cells & Batteries

8 hours (online open book) including up/download time. Recommended duration 120 minutes (On-line)

Attempt SIX QUESTIONS

Use a single file but make sure that the answers are well identifiable with the question number.

Marks in brackets are for guidance only

Numerical questions:

Marks will not be awarded unless full working solution is shown.

A Set of Physical Constants is provided in each problem if required. However, if needed please use any reference book that you need.

SECTION A

Q1.  Answer ALL parts of this question.

(a)    A   100  cm2    standard  crystalline  silicon  solar  cell   has  the following parameters:

Electron diffusion constant (D) in the base = 40 cm2  sec-1 . Minority carrier lifetime (τ ) in the base = 5 μsec.

Reflection coefficient (R) from the top surface = 3%. Emitter thickness (xn) = 1 μm.

Depletion layer thickness (xdr) = 0.3 μm.

Equilibrium electron density in the base = 105  cm-3 .

The wavelength dependent absorption coefficient (aλ ) of the silicon solar cell can be found from blackboard.

(i)     Assume  that  there  is  no  recombination  in  the  emitter  (its collection probability is 1.0) and the base thickness is infinite.

Under standard testing conditions, determine:

−      the simplified equation for the wave-length dependent internal

quantum efficiency (IQEcell(λ)) of the cell;

−      the photogenerated current produced by the cell;

      the dark saturation current;

      the open circuit voltage.  [15 Marks]

(ii)     If the recombination rate in the emitter is approaching infinite, determine the photogenerated current for the cell. [5 Marks] 

(b)    A schematic diagram of HIT silicon solar cell is shown in the Figure below.

 

Discuss the features which contribute to its high efficiency, and the  key  considerations  which  affect  their  design.  Wherever appropriate, indicate which spectral region you would expect to show  an  improvement  in  the  quantum  efficiency  for  each feature. [5 Marks]

Q2.  Answer ALL parts of this question.

(a)    A  standard crystalline silicon solar cell of area  100 cm2 with contacts to front and rear has a top n-type diffused emitter of thickness xn = 1.0 µm and a depletion layer of thickness xd.r =0.5 µm. The base, which can be assumed to be of infinite thickness, is doped with  boron at concentration of 5  ×  1015   cm-3 .  The diffusion constant of electrons in the base is D = 30 cm2  sec-1 minority-carrier  lifetime  in  the  base  is  8  µsec.  The  cell  is illuminated  by  long-wavelength  light  which  excites  charge-carriers   uniformly,   with    a   constant    (depth-independent) generation function g = 2 × 1018  sec-1  cm-3 .

(i)     What is the rate of generation of the photoelectron-hole pairs (in sec-1) in the depletion region? [3 marks]

(ii)    What is the probability of an electron generated in the base, 120 µm from the junction, to be collected at the junction? [3 marks]

(iii)    Neglecting  the  contribution  from  the  emitter,  what  is  the photogenerated current from the cell? [6 marks]

(iv)    Using the intrinsic carrier concentration in silicon equal to 1010

cm-3 , determine the dark saturation current from the base. [3 marks]

(b)  The  materials  listed  in  the  following  table  are  available  for fabrication of binary organic solar cells.

Materials

HOMO/VBM (eV)

LUMO/CBM (eV)

Materials

Work

function(eV)

P3HT

- 6.6

- 3.2

ITO/glass

- 4.8

PCBM

- 5.2

- 4.2

Ag

- 4.3

TiO2

- 7.5

- 4.1

 

 

MoO3

- 5.3

- 2.3

 

 

(i)     Drawing a schematic energy diagram for a bilayer organic solar

cell, briefly discuss its working principle and interpret the roles of buffer layers in term of their band-structures. [6 Marks]

(b)    Propose three effective methods to further improve the bilayer organic solar cell’s efficiency and stability. You may introduce new chemicals except for using new organic semiconductor light absorbers. [4 Marks]

Q3.  Answer ALL parts of this question.

(a)    Describe   working   principle   of   Dye   Sensitised   Solar  Cell (DSSC).  Draw  a  schematic  energy  diagram  of  a  standard DSSC, indicating energy levels of all participating compounds, and the directions of energy and charge transfer. Provide the list  of  the  reaction  processes  and  their  names.  Show  the structure and typical dimensions of standard DSSC. [3 marks]

(b)    Discuss  the  main  requirements  for  the  dye  in  DSSC  when searching for new one. Rank their priority. [4 marks]

(c)    A  newly  developed  DSSC  semiconductor  is  based  on  ZnO nanostructures  with  triangular  prism  shape.  The  prism  is characterised by average triangle side of a = 10 nm and height of  h  =  20  nm.  Calculate  the  specific  surface  area  of  the nanostructured material (in m2  g-1) and the surface area of 1 cm2 electrode composed by aggregated nanoprisms forming 10 µm thick layer with porosity 60%. The density of solid ZnO is 5.6 g cm-3 . [5 marks]


(d)    Describe working principle of amorphous silicon (a-Si:H) solar cell. Draw its layered structure and architecture, indicating the typical  thickness  and  composition  of  each  layer  and  its functions. Sketch the energy diagram of the a-Si:H solar cell and indicate the direction of charge carriers transfer. Discuss specific  features,  advantages  and  disadvantages  of  a-Si:H solar cell. [5 marks]

(e)    Consider  a 4-junction solar cell having following architecture

Semiconductor  A/   Semiconductor  B  /   Semiconductor  C  / Semiconductor D with band gaps 2.00 eV, 1.45 eV, 1.01 eV and 0.77 eV, respectively.

Using  Table   1  below,  estimate  the  maximum  theoretical efficiency of this solar cell assuming a current matching regime and a fill factor equal to 0.8.

Calculate   the   thicknesses   of   the   semiconductor   A   and Semiconductor B layers in order to absorb 95 % of the incident light  for  each  subcell  spectral  range,  using  the  values  of absorption coefficients near the band gap as α 1  = 5 µm-1  and α2 = 2 µm-1 for semiconductor A and B respectively. [4 marks]


Table 1. The maximum current density that can be generated by a single-junction solar cell made from a semiconductor with bandgap Eg under AM1.5 sun radiation.


(f)     Calculate  how  much  the  thickness  of  the  second  layer (Semiconductor B) can be reduced without affecting the total current of the cell. [4 marks]

SECTION B

Q4. Answer ALL parts of this question.

(a)    Consider  the   negative  electrode  of  lithium  battery,  which operates on following semi-reaction:

x Li+  + x e-  + TiO2  = LixTiO2                               (E0  = 1.5 V vs. Li+/Li)

Calculate the specific charge/discharge capacity of the negative electrode (in mA h g-1) for x = 3. (Atomic masses of Li, Ti and O are  6.94,  47.87  and  15.99  g  mol-1    respectively,   Faraday constant, F = 96485 C mol-1). [4 marks]

(b)    Consider   the   positive  electrode  of  lithium   battery,  which operates on following semi-reaction:

Li1-xCoO2  + x Li+  + xe-   LiCoO2                 (E0  = 4.2 V vs. Li+/Li)

Calculate the specific charge/discharge capacity of the negative electrode (in mA h g-1) for x = 0.5. (The atomic mass of Co is 58.93 g mol-1). [4 marks]

(c)    Schematically draw the complete lithium cell assembled from

the negative and the positive electrodes from (a) and (b).

(i)     Show  all  components  of  the  cell  and  write  the  overall electrochemical reaction.

(ii)    Calculate the maximal operational voltage of the cell.

(iii)    Determine    the    charge/discharge    capacity    of    the assembled cell.

(iv)   Taking into account that the mass of active the electrode components comprises only 40% of the total mass of the

cell,calculate the mass of the 2500 mA h cell.

(v)    What does the other 60% of the mass consisting of? (vi)   What is the specific energy of this cell in Wh kg-1? [6 marks]

(d)    Compare   electrochemical  batteries  and  supercapacitors  in terms  of  electricity  storage.  What  are  the  advantages  and disadvantages   of   each   example.   Explain   the   difference between EDLC and pseudo-capacitors. Illustrate the difference using charge discharge curves. [5 marks]

(e)    Explain  the  most  common  mechanisms  of  lithium-cobalt oxide battery degradation. At which operational conditions are they most likely to occur? For each mechanism indicate measures which can inhibit the degradation [6 marks]

Q5. Answer ALL parts of this question.

(a)    Calculate the limiting current for the reduction of Fe3+  and Sn4+ ions contained in a 1 moldm-3  HCl solution at concentrations of 2.0 × 10-3  mol dm-3  and 1.0 × 10-3  mol dm-3 , respectively. The reduction was at a flat platinum rotating disc electrode of 0.30 cm2  geometrical area. The mass transport coefficient of Fe2+ and Sn4+  at the same rotation rate is the same, i.e., 10-2  cm s-1 . [5 marks]

(b)    Make a sketch of how the current vs. potential curve should look like when the potential is scanned from +1.3 V to -0.40 V vs. SHE. The diagram should be labelled and quantitatively correct, assume that there is no change of concentration of Fe2+  and Sn4+ during the potential scan. [10 marks]

(c)    In a metal plating company, you need to measure the reduction kinetics of a single electron reaction where the reactant is a soluble species. The diffusion coefficient is not known. Can you use a  rotating disk electrode  be to  make the  measurement effectively?  If so, how would you proceed?  If not, why  not? Please include the equation or equations that you should use and  the  implications  of  the  mass  transfer  and  the  current distribution. [10 marks]

Q6. Answer All parts of this question

a)     Assume  an  electrolyser  that  consumes  100  kW  power  at  a current  density  of   1500  A  m-2    to  generate  hydrogen  gas operating at 80 0C at 98.5% faradic efficiency. The equilibrium voltage at the operating temperature is 1.18 V but during the operation, away from the equilibrium, the potential difference between anode and cathode is 1.85 V.  If the surface area of the electrodes is 1 m2  calculate the following:

i)      The operating current and voltage of the stack

ii)      The rate of hydrogen production

iii)     The energy efficiency of the electrolyser  [Mark 20]

b)     The  catalyst  load  of  a  gas  diffusion fuel cell electrode w  is typically in the order of 20 mg cm-2 . Assume that the hydrogen adsorption   Qad      on   the   catalyst,   determined   by   cyclic voltammetry in 0.5 mol dm-3  H2SO4 , was 0.1C. The geometric area of the electrode, Ag  was  1 cm2  and that the area of the catalyst available, typically platinum determined by BET, used

to manufacture the fuel cell electrode was 3 m2  Pt g-1 . What is the percentage of platinum utilization?  [5 Marks]

 


站长地图