代做COMP3065 Computer vision Coursework代写留学生Python程序

- 首页 >> Python编程

COMP3065 Computer vision Coursework (40% of Module Mark)

Submit an electronic copy via Moodle

In class we have learned many techniques that help solve computer vision problems. Some techniques are discussed in details in the lecture or in the labs while some are only briefly discussed. In this coursework, you are required to apply these techniques to solve practical problems at your interest. You will implement/or use the techniques discussed in class or any computer vision algorithm you found through the text books or published papers, depending  on the projects you select to work on.

1.   Select a project. First, you need to select one of the following projects to work on. Note that the following only depicts the basic requirement of the project. You need to implement additional features at your choice in order to obtain higher marks for the coursework (see marking rubrics in moodle). Additional features could be UIs, additional steps/algorithms for improve results, being able to work with hard scenarios (such as blurred video for panorama generation, tracking multiple people at the same time) etc. Please talk to the module convenor if you are not sure whether what a good feature is for your project.

a)   Panorama generation from videos In this project, you are required to write a

program that can successfully generate a panorama image from a given short video. You need to capture your own videos (at least 3 sets) for testing your program. The trick to capture a good video for panorama generation is to only rotate your body while taking the videos without moving yourself away.

b)   Person tracking from videos In this project, you are required to write a program that can track people from a given video. You need to capture your own videos (at least 3 sets) for testing your program.  The output of your program should be the same video with bounding boxes indicating each person and their trajectories.

c)   Your own idea You can write a program to solve a computer vision problem that you are interested. This can be any of the topics covered in the class or not covered in the class but relevant to computer vision. You can also select a computer vision paper to implement. You do not need to implement the full paper as long as your program has the main idea. The scope of your own idea should be similar to project a, b, or harder. If you select your own idea, ensure you discuss with me  what you want to do. The idea is subject to the module convenor’s approval. In general, I will allow it as long as it is not too simple to implement.

2.   Write a program implementing your design. You are recommended to use Python

although any programming languages are OK. You can use any libraries that can help you to achieve your tasks such as OpenCV, as long as it will not directly give you the output of the project you are working on. You cannot directly use the code you found online or from the lab sample code. Please consult me if you are not sure whether certain libraries are allowed.

3.   Write a report (max 2500 words) which:

•     Describes the main objectives of your project and the key functionalities/features implemented .

•     Describes detailed steps included in your method and specific computer vision techniques employed.

•     Presents and explains the results obtained on the test images/videos.

•     Critically evaluates your method on the basis of those results; what are its strengths and weaknesses? This section of the report should make explicit reference to features of the results you obtained and how they compare to the expectations you had of your design.

Assessment criteria:

•     Code: 50%

•     Report:

o Description of key features of the implementation: 25%

o Explanation of the results obtained: 10%

o Discussion of the strengths and weaknesses of the chosen approach and methods: 15%

What to submit: two files to submit: 1) a zip file containing source code and test images/videos; 2) a report of max 2500 words as described above, due 23:59, May 05, 2025.



站长地图