代写SEV300 – Reinforced Concrete and Steel Structures Assessment 2调试数据库编程

- 首页 >> C/C++编程

SEV300 – Reinforced Concrete and Steel Structures

Assessment 2 – Concrete Design Report

1. Introduction:

The Design Project is intended to provide a realistic design project scenario. Students will produce design deliverables  similar to those in a design consultancy office. A reinforced concrete six-story building must be designed to accommodate car parking on the ground floor, offices on the 1st – 4th floors, and the fifth floor for services. The developer approved a complete set of architectural drawings and made them available to the structural designer. However, a collection of structural design drawings has been provided for guidance. The building is for construction in Australia and must adhere to Australian design standards and standard materials. Students must individually complete the structural analysis and design of one allocated continuous beam and one slab panel.

2. Scope of work

The required task in this assignment is to conduct a complete structural design of one continuous beam of at least two spans and one slab panel over one of the beam spans.

Column and footing design tasks are optional. To progress the design task, you can follow the steps below;

Organisation and Assumptions:

•    Architectural drawings of the building have been provided, showing all dimensions (in meters and millimetres) and space  allocations. These drawings show no structural elements or force-resisting members. Lines indicate the boundaries of  each space, allowing for sufficient circulation zones. As the structural engineer (the designer), you need to recommend the location, type and details of the structural elements in the building. You may assume the required dimensions if the drawings do not advise you. However, students shall verify all assumptions in the final design report.

•    Start by laying out a suitable concrete beam grid for the allocated building floor. Floor frames typically consist of slabs and beams supported by columns and walls. Try to use typical dimensions for the members and frame bays.  Use the  labelled grid and structural elements such as beams and columns using a unique code for each member of each type, i.e. for beams, use B1, B2, etc., and for columns, use C1, C2, etc.

•    As detailed below, each student will be allocated a design zone on a specific floor level.

•    To avoid duplication, students must select one continuous beam of two spans or more and one slab panel within the design zone. Column and footing designs are optional.

•    Allocate a  building location and exposure class and use that information to select the concrete's minimum cover and suitable compressive strength (strength must be verified later in your design).

•    Select suitable materials for the construction and specify the mechanical  properties you will use in your design calculations.

•    Allocate loading and load combinations following Australian Standards  AS1170  and identify likely critical load combinations.

Concrete Mix Design:

•     Concrete mix design shall be project and element-specific and must satisfy your specific project strength requirements.

•     Mix design procedure shall follow the American Volumetric Method, as per Chapter 5

(proportioning of concrete mix) of the textbook (Properties and Design of Concrete Structures, Al-Ameri, 2017).

•     Students shall design the concrete mix for either N32 or N40 Grades.

•     Students shall  select the Coarse aggregate for the concrete mix from the following options:

a.     Gravel with crushed particles as coarse aggregate.

b.     Sub-angular coarse aggregate.

Analysis and Conceptual Design:

•     Calculate the slab loads following the steps below:

a.     Nominate a trial slab thickness.

b.     Control the slab deflection by adopting a span/depth ratio equal to or less than 28.

c.      Define dead and live loading & ultimate combination of loading. Show on load summary sketch.

d.     Define the slab tributary area for each supporting beam within your slab boundary.

e.     Conclude by identifying the critical load for slab design and beam load  share from the slab.

•     Conduct a structural analysis of the beam as below:

a.     Nominate trial beam cross-sectional dimensions.

b.     Define dead and live loading & ultimate combination of loading. Consider the slab load transferred to the supporting beams. Show on load summary sketch.

c.     Control the deflection of the beam  by adopting a span/depth ratio equal to or less than 10.

d.     You can use structural design software (e.g. Space Gass) to analyse or use the simplified conventional method.

e.     Calculate the shear along the beam spans and show it on SFD.

f.      Calculate the bending moments along the beam spans and display them on BMD.

g.     Conclude by identifying the design's critical load actions (Maximum BM and SF).

Detailed Design:

•    Students shall provide a detailed design of the allocated structural elements. The simplified method of structural analysis, adopted in AS3600, shall be followed.

•     Detailed Design of Reinforced concrete beams and slabs shall comply with the Australian Standards  AS3600-2009.   Ensure  that  your  sections  meet  the  strength, safety, and ductility requirements.

•     Beams  shall  be  designed  as  a  T-shape  (or  inverted  L-  L-shape  for  edge  beams)  for negative and positive moments, shear, serviceability (deflection) and rebar details.

•     Design  the  beam  for  the  maximum  moment  along  all  spans  (negative  or  positive moments), then use the cross-section to calculate the required steel bars for other locations in all spans.

•     Distinguish  between  the  negative  moment  design  (with  top  steel)  and the  positive moment design (with bottom steel).

•     Selected slabs shall be two-way slabs designed for negative and positive moments, shear, serviceability (deflection), and rebar details.

•     Provide all calculations and ensure you show units and use appropriate figures.

•     Provide  typical  calculations  for  each  element  to  support  the  software  outputs  if  a design software has been used.

•     Use   the   design   Aids   provided  by  SRIA  to  assist  in  the  design,  particularly  for reinforcing size and detailing. Reinforcement detailing shall follow the recommended practice shown in The Reinforcement Detailing Handbook.

•     The design shall be concluded with design summary sketches. Sketches shall be drawn to scale and include sufficient information.

3. Deliverables:

The  concrete design  report shall  include the structural analysis, concept design, and

detailed  design of  the   allocated beam and slab. Column  and footing designs are optional.  Each   student  shall  submit  a  report  with  a  minimum  of  10,000  words  and include design calculations, summary, sketches, and cross-sections for beams and slabs. Ensure that the originality check should return no higher than 15%. Reports with higher rates will not be assessed. Each student will complete the detailed design as an individual task. The concrete design  report  is  a  hurdle  and will  be  marked for 40%  and due for submission on Sunday, 8 September 2024 (end of Week 8), 8:00 pm AEDT. Submission via the  unit  site  (accessed  in  DeakinSync).  One  CloudDeakin submission  is  permitted  per student.

4. Report Content:

The concrete design report shall be structured to include the following items.

Item

Description/detail

Frontpage

It shall include the project title and the student's name.

Table of Contents

Number all pages.

Ch.1 Introduction.

Be brief; make it project-specific.

Ch 2. Concrete Mix design.

Covered in Week 1 Lectures

Ch 3. Design concept, Assumptions.

concept report, design parameters & assumptions

Properties: Including Material Properties, Exposure Class, Cover, etc.

Loads & Load Combination: using AS1170 for load assumptions and combination. Give details in Ch 4.

Floor Plans & Sections: Identify all structural elements on the floor to be designed.

5. Assessment:

The report shall be concise and shall not include redundant  information.  Superfluous information may be included in an Appendix if considered necessary. Submissions before the due date shall be regarded as  "timely".  The  School and Faculty Guidelines for late submission will be applicable. Students who use design software in the analysis and design tasks will receive 5% bonus marks for their project and must verify the software outcomes by typical calculations.

6. Project Resources:

The following documents contain essential project-specific information and are available online.

•    Architectural & Structural Drawings

•    Project Design Brief

•    Project Rubric

7. Team task allocation:

Allocated structural element to be designed by each student (location by axes)

Student surname first

letter

Floor Level

Continuous RC Beam

Slab panel region

A-B

1

Horizontal axis 5a-6

4-6 & A-H

C-D

2

Vertical axes A-B

1-6 & A-D

E-F

3

Vertical axes C-D

1-6 & A-F

G-H

4

Vertical axes E-F

1-6 & C-H

I-J

5

Horizontal axis 2

1-3 & A-H

K-L

1

Vertical axes G-H

1-6 & E-H

M-N

2

Vertical axis F

1-6 & C-H

O-P

3

Horizontal axis 1

1-3 & A-H

Q-R

4

Horizontal axis 2

1-3 & A-H

S-T

5

Vertical axes A-B

1-6 & A-D

U-V

1

Horizontal axis 1

1-3 & A-H

W

2

Horizontal axis 2

1-3 & A-H

X

3

Horizontal axis 3

2-4 & A-H

Y

4

Horizontal axis 4

3-5 & A-H

Z

5

Horizontal axis 5

4-6 & A-H







站长地图