代做PHYS-440 2024S SPAD代写留学生Matlab程序

- 首页 >> C/C++编程

PHYS-440 2024S

SPAD

brie

March 29, 2024

1    Perspective on the bigger meaning of this experiment

This paper could be summarized as: You’ve found a way of seeing single photon detections and you’ve found those detections produce statistics consistent with Poissonian statistics.

That says that the incoming photon detections are random, much like the flip of a coin.  As simple as this seems, it’s actually a really big and useful discovery, because it provides a guideline for when understanding photodetection is ‘normal’ or ‘not normal’.  The entire field of quantum optics looks to understand more unusual forms of light, and the way those unusual forms of light are detected is by looking at statistics just like you did in this lab.

One thing not to forget is that, like any experiment, our results are limited by our measurement apparatus. If you were to do a simple calculation of how many photons are hitting your detector (using E = ω, where is Planck’s constant and ω is the frequency of the light), you would see that an enormous number of photons hit the detector and you miss the detection of almost all of them. So what can we say about the nature of the light source if we miss most of the detections? Unfortunately, not that much.

However, if you were to make a source of light, measured photons counts using your same photodetector AND it produced non-Poissonian statistics, that would be a big deal. That is in fact exactly what many researchers, including myself, are working on. The Poissonian limit is often called the ‘shot-noise limit’ and provides a benchmark that one can use to evaluate the performance of a light source whose behavior is fundamentally quantum mechanical.

2 Partial Outline Format

2.1 Abstract

Don’t need to outline this. It’s an outline of the paper in itself!

2.2 Introduction

1. point of 1st paragraph

(a)  1st subpoint of 1st paragraph

(b)  2nd subpoint of 1st paragraph

(c)  3rd subpoint of 1st paragraph

2. point of 2nd paragraph

(a)  1st subpoint of 2nd paragraph

(b)  2nd subpoint of 2nd paragraph

2.3 Background

etc, etc etc,

3 Writing

3.1 Abstract

3.2 Intro

1.  Remind people about light and what photons are. The concept of a photon is actually not trivial at all, so put some thought into this.

2.  Make the connection of understanding photons means we need to be able to measure them somehow.

3.  Conceptually explain what a SPAD is.

4.  Explain the idea behind Exp 4 and 5 conceptually. This will take some thinking to explain clearly!

5.  Conceptually explain the relationship of the results to binomial and Poissonian statistics. You want to accomplish this with little to no actual math. I recommend relating this to my explanation of ‘coin flipping’: Each photon arriving (or not arriving) is like getting heads on a biased coin (or getting tails).

3.3 Background

1.  Explain the important mathematical results necessary to explain the theoretical models that will go on your experimental plots. That means explaining the Poissonian distribution and its consequences. You don’t need full derivations, but you need to distill the important results AND motivate them conceptually.

2. Your background should finish up with most, if not all, of the theory necessary to put theoretical models on your data.

3.4    Experimental Set-up

1.  Explain that you need to provide background on the experimental apparatus.

2.  Explain in further detail what a diode is and what a SPAD is.

3.  Describe the simplest circuit (reverse bias SPAD and resistor) and how it outputs pulses. Show an example pulse. Don’t put the entire circuit first! Or if you do you need to section off the figure so the reader can be directed to the 1st half (like Exp 3).  You need to explain things in small pieces and build up to the final circuit. Remember to include figures and reference them directly in the text. Use captions on the figures!

4.  Explain the comparator circuit, voltage divider and show an output pulse of analog and digital.

5. Include a figure which has a screenshot (from your phone) with the photon pulse and the comparator output clearly shown. Use the ‘single’ button on your scope to grab one. Make sure you either note or can clearly see the scales so you can note them in the figure caption.

Figure 1: your two main experimental figures

3.5 Results and Analysis

1. You should focus here on presenting the results of Exp 4 and 5.

2.  Exp 4: You should have a histogram, vertical error bars, and a fit with fit parameters. Figures, labels, units, etc are of course necessary.

3.  Remember to interpret the results of all your plots.  What do they mean? The plot for Exp 5 is not simple and you need to take time to explain what it is.

4. You should find τ from BOTH the y-offset and slope of your data! To do this your data needs to be normalized AND plotted as a function of bin number (not time).

5. Your τ’s should be consistent with each other AND with the average rate found from Exp 4.

6.  The result of all this is that your photon detections show Poissonian statistics. So what?  What does that mean to the reader? If your results aren’t very Poissonian, why not? What if your τ’s are not all consistent?

7. Your main figures should looks something like Fig. 1.

3.6 Discussion

1. I’ll let you work this out.





站长地图