代做INT303 Assignment 1: Web Scraping & Data Analysis调试SPSS

- 首页 >> Java编程

Assignment 1: Web Scraping & Data Analysis

Sep 31, 2024

In this assignment, you should work with data from

https://www.themoviedb.org/movie (Online Popular Movies Platform)

The Movie Database (TMDb) is a popular platform. for movie enthusiasts, offering a vast collection  of movies  from  all  genres  and  regions.  TMDb  provides  users  with  detailed information such as movie titles, release dates, cast, crew, genres, ratings, and more. It's ago- to source for finding information about both classic and upcoming films, as well as the latest in TV shows.

Everyone is interested in great movies, but with so many films released each year, how can we find the best ones? Scraping high-quality data from movie websites is crucial. In this project, we will utilize the skills we've learned with requests and regular expressions to scrape essential movie details from The Movie Database (TMDb) website, allowing us to build a comprehensive dataset for further analysis.

Task1. You are required to scrape 200 Movies from the website and save result into

‘your_name+id.csv ’. This file should contain data with the following columns: (40 marks)

Title of Movie

5 marks

Year

5 marks

User Score

5 marks

Description

5 marks

Director

5 marks

Screenplay

5 marks

Type

5 marks

Revenue

5 marks

You are free to explore data with more properties if needed.

Task2. You are required to do a data analysis on the data. What do you think is interesting about this data? Tell a story about some interesting thing you have discovered by looking at the data. (60 marks)

For example, which one is the best movie you might watch? Does the type of movie affect movie sales? Which category of movies sells the best?

Note: This is an open topic project. You are required to provide a novel topic and

demonstrate your hypotheses (viewpoints) with data analysis and figures illustrations.

The reports and running code (web scraping + data analysis) should be submitted using Jupter Notebook file.

Submission Checklist:

Yes/No

Items

Jupyter Notenook code

your_name+id.csv

Marking Guidelines

Marking Criteria

Idea (5 marks)

Presents a novel idea

Clearly demonstrate your viewpoints.

Demonstrates good understanding of the topic.

Discussion (30 marks)

Provide convincing arguments to your viewpoints.

Backs up arguments with appropriate data analysis results.

Visualize  data     analysis     results by

using more than 5 figures.

Organization (20 marks)

Use of figures to support ideas discussed in the report.

The quality of the figures.

These figures should be informative.

Use of sub-titles and/or clear topic sentences.

Use multiple visualization methods (line, bar, pie chart, etc, ).

Writing Style (5 marks)

Concise writing style

Strong scientific writing without grammatical errors.





站长地图