辅导M345SC2020辅导留学生Python设计
- 首页 >> Java编程23/02/2020 Scientific Computation Project 2 (last updated 19/2) — M345SC2020 1.0 documentation
https://m345sc.bitbucket.io/p2.html#p2 1/4
Scientific Computation Project 2 (last
updated 19/2)
Clarifications
Part 1.1 (19/2): A simple example Alist for a 3-node, 2-link network: Alist = [[2,1],[0],[0]]
Part 1.2 (19/2): If no path exists between start and dest, return an empty list.
Part 1.3 (19/2): You may assume that at least 2 in-network stations have a cycle route between them.
Part 2.2i) (19/2): Aside from i at node x, all variables should be set to zero at t=0
You are not required to use latex or the provided latex template. Any pdf with a simple, clear presentation
is perfectly fine.
Due date/time: 2/3/2020, 18:00 GMT
This project consists of two parts – in the first, you will be developing/analyzing algorithms on graphs, and
in the second you will be analyzing dynamical processes on graphs.
Getting Started: Template files have been added to the course repo in the project2/ directory. You can
also download the files directly from here: | part1_template.py | part2_template.py |
project2_template.tex
Place these files in a folder, and create copies of the template files named part1_dev.py and part2_dev.py
in this new directory. Ultimately, the final files that you submit should be titled part1.py, part2.py, and
project2.pdf. Browse through the Python template files; there are a few function headers, and you will
have to add code for each of these functions as described below. First, however, you should add your 8-
digit college id to the docstring at the top of each file.
Part 1.
You are tasked with analyzing public transportation networks. You are allowed to use the collections mod-
ule for part 1, please do not use any other external modules.
For each of the questions below, you should develop a correct, efficient algorithm, implement the algo-
rithm in Python, and discuss the running time and efficiency of your implementation in your pdf. Your dis-
cussion should include an estimate of the asymptotic running time and a concise description of how you
constructed this estimate. You should also include a brief description of each algorithm.
1) (2 pts) You are given a set of airports and connections corresponding to a air transportation network.
Specifically, you know if there is a direct connection between any two airports in the network. Complete
the function, flightLegs, so that it efficiently computes the minimum number of flights required to travel
between two distinct airports on the network. The function should also efficiently determine the number of
distinct routes between the two airports which require this minimum number of flights. The function is
provided an N- element adjacency list, Alist, as input, and airports are numbered from 0 to N-1. The ith
element of Alist is a list containing the airports which can be reached directly from airport i. The network
is symmetric, so if i can be reached directly from j, then j can be reached directly from i. The starting
(start) and destination (dest) airports are also provided. The function output should be a two-element list
containing the minimum number of flights required to travel between start and dest and the number of
distinct journeys between start and dest with this minimum number.
2) (5 pts) You will now analyze the journeys on a subway network. You are provided with a list of stations
and direct routes between stations.
i) You are also provided with densities for the network where corresponds to the average number of
people on a direct journey from station i to j (no stations other than i and j are visited during a direct jour-
ney). For convenience, we will assume that . A safety factor, , for a journey between stations a
23/02/2020 Scientific Computation Project 2 (last updated 19/2) — M345SC2020 1.0 documentation
https://m345sc.bitbucket.io/p2.html#p2 2/4
and b (not necessarily a direct journey) is defined to be the maximum density encountered during the jour-
ney (lower S corresponds to higher safety). Given a starting and destination station, develop an algorithm
to efficiently find the safest journey between the two stations. Implement your method in safeJourney in
part1.py. Along with the starting and destination stations, the function is provided an adjacency list, Alist,
for the network. The ith element of the list is a list of tuples. Each tuple contains a station which can be di-
rectly reached from i, and the density for travel between that station and i. The function should return a
list containing the sequence of stations encountered during the safest journey and the safety factor for the
journey. E.g., if the function returns [[1,5,3],10] then the full journey is 1 -> 5 -> 3 and the safety factor of
the journey is 10. If multiple journeys produce the same minimum S, you can return any one of those jour-
neys. If no path exists between the starting and destination stations, return an empty list.
ii) Now consider the fastest journeys between stations start and dest. You are provided with durations of
journeys between stations i and j, (rounded to the nearest minute and ), and if there are multi-
ple shortest journeys, you should select the one with the least number of steps. Complete shortJourney so
that it efficiently finds this fastest journey and returns the stations included in the journey (as a list) and
the duration of the journey. If no path exists between the starting and destination stations, return an emp-
ty list. The overall setup of the function is very similar to safeJourney, and further details are provided in
the function docstring.
3) (3 pts) You are provided a network of train stations and, for a given station outside of this network (x),
you know the minimum fare for reaching each in-network station from x, and you also know the minimum
fare for returning to x from any in-network station. You are also given a list of 2-way dedicated cycling
routes connecting pairs of in-network stations. Complete the function, cheapCycling, so that it efficiently
finds the cheapest cyling journey and returns the pair of distinct in-network stations corresponding to this
journey. Here, a journey consists of 1) arrival at an in-network station from x, 2) some amount of cost-free
cycling using dedicated routes, and 3) return to x from an in-network station which is distinct from the ar-
rival station. The train stations are numbered from 0 to N-1, and the function is provided two N-element
lists as input (Slist and Clist). The ith element of Slist contains two numbers – the minimum arrival and
return fares for routes between stations i and x. Clist is an adjacency list. Its ith element contains a list of
integers which correspond to in-network stations that can be reached directly by bicycle from station i.
Note for Part 1: You are not allowed to use heapq, however, if you determine that the best approach to a
problem requires a binary heap, you should choose this approach, implement it without a heap, and then
discuss the benefits of the heap (and its influence on the asymptotic running time) in your analysis.
Part 2.
1) (5 pts) For this question, you will investigate random walks on unweighted, undirected graphs. One step
of a random walk is defined as follows. The probability of a walker moving from node i to node j is
where is the adjacency matrix for the graph, and is the degree of node i.
i) Complete rwgraph so that it efficiently simulates M Nt- step random walks on the NetworkX graph pro-
vided as input. All walkers should start at the same node with the this node set via input variable, i0. Pro-
vide a 1-2 sentence description of your algorithm for 1 simulation step in your pdf.
For the next two questions, you should use Barabasi-Albert graphs with n=2000 and m=4 (see NetworkX
documentation for the definitions of m and n). You should also fix seed so that the same graph is generat-
ed each simulation.
ii) Analyze your simulation results as Nt and M are increased. The initial positions for all walkers should
be the node with maximum degree. If multiple nodes have the same maximum degree, select the node with
the smallest node number. Compare large-Nt results to the node degrees for the graph. Make 1-2 figures
supporting your main findings, and place them along with accompanying discussion in your pdf. The code
used to generate the figures should be placed in rwgraph_analyze1
iii) Recall that linear diffusion on an unweighted graph was defined using the graph Laplacian matrix,
where Q is a diagonal matrix with the graph degrees on the diagonal, and A is the adjacency
matrix. The scaled Laplacian, , is defined as . Consider the linear spreading produced
by both this operator and . Investigate if any one of these three diffusion operators produces dynamics
with significant similarities to your simulated random walk results (all generated using the same B-A
23/02/2020 Scientific Computation Project 2 (last updated 19/2) — M345SC2020 1.0 documentation
https://m345sc.bitbucket.io/p2.html#p2 3/4
graph). Identify 2-3 key points and provide explanations of what you have found in your pdf. These may be
accompanied by figures as needed. Place any relevant code in rwgraph_analyze2. You are not required to
establish quantitative correspondence between simulated diffusion and random walks on a time-step by
time-step basis.
2. (5 pts) Consider the following two models for transport processes on graphs:
Model A:
Model B:
Here, is the Laplacian matrix and is the adjacency matrix for an N-node graph.
i) Complete modelA so that it computes simulations of modelA on the NetworkX graph provided as input.
Complete the function, RHS, so that it computes and returns the right-hand side of the model equations
(see the function docstring). You should assume that RHS will be called a very large number of times with-
in one call to model A and construct your code accordingly. Construct an estimate of the number of opera-
tions required to compute in one call to RHS. Add this estimate to your pdf along
with a concise explanation of how it was constructed. Add the needed code below RHS to simulate the
model for Nt time steps from t=0 to t=tf with the initial condition at node x with x and provided
as input, and finally return .
ii) Investigate the similarities and differences between the dynamics generated by model A, model B, and
linear diffusion on Barabasi-Albert graphs. You can initially consider , , and ,
though you are free to vary these parameters as you like. You should initially (at t=0) set all variables to
zero except for i at the node with maximum degree. You should design your own approach to the problem,
and identify 3-4 key points, carefully discuss them (and provide explanations for highlighted trends), and
produce a few figures illustrating numerical results related to the key points. Among the points you could
consider is the initial spread of a perturbation placed at some node x. Add code for generating your figures
to the function, transport and add the figures and accompanying discussion to your pdf. It is sufficient to
consider B-A graphs with n=100 and m=5. Add code in the name==main portion of the code to call trans-
port and generate the figures you are submitting with your assignment
Notes for Part 2:
You may use numpy, scipy, matplotlib, and networkX for part2. Do not use any other modules without
the instructor’s permission.
You should design your codes to efficiently work with large complex networks. You may assume that
where N is the number of nodes and L is the number of links. You may also assume
that all graphs in this part consist of one connected part and that there are no self-loops.
You do not need to account for the randomness of Barabasi-Albert graphs by, say, running simulations
with several graphs and averaging the results.
Further Notes:
1. Marking will consider both the correctness and efficiency of your code as well as the soundness of your
analysis. For part 2, consideration of efficiency will focus on computationally intensive tasks. Code for gen-
erating figures or processing simulation results are unlikely to be closely examined.
2. All figures created by your code should be well-made and properly labeled.
23/02/2020 Scientific Computation Project 2 (last updated 19/2) — M345SC2020 1.0 documentation
https://m345sc.bitbucket.io/p2.html#p2 4/4
3. In order to assign partial credit, markers must be able to understand how your code is organized and
what you are trying to do.
4. Lab 6 contains an exercise on simulation of 1-D random walks.
5. You should aim to limit your discussion for part 1 to 2 pages. For part 2, you should aim to fit your dis-
cussion within 5 pages including up to 6 figures. These constraints are provided for guidance, and marks
will not be deducted for exceeding these limits.
6. Add additional functions as needed, but these functions should not use any external modules outside of
those explicitly allowed for each part.
7. You may use codes provided in lectures and labs, but you should not assume that these codes are
“efficient”.
8. Please be sensible with the amount of time you devote to the open-ended portions of the assignment. If
it seems that your approach for, say, question 2.2 will require an extraordinary amount of time, it may be
helpful to consult with the instructor.
Submitting the assignment
To submit the assignment for assessment, go to the course blackboard page, and find the link for “Project
2” Click on this link and then click on “Write Submission” and add the statement: “This is all my own un-
aided work unless stated otherwise.”
Click on “Browse My Computer” and upload your final files, part1.py, part2.py, and project2.pdf. Finally,
click “Submit”.